

#### **DECLARATION OF PERFORMANCE**



No. 0081 - EN

- 1. Unique identification code of the product-type: fischer Bolt Anchor FAZ II
- 2. Intended use/es:

| Product                            | Intended use/es                                                          |
|------------------------------------|--------------------------------------------------------------------------|
| Torque controlled expansion anchor | Post-installed fastening in cracked or uncracked concrete, see appendix, |
|                                    | especially Annexes B 1 to B 4                                            |

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, 72178 Waldachtal, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-05/0069; 2016-08-05

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

#### Mechanical resistance and stability (BWR 1)

| Essential characteristic                                               | Performance                                 |
|------------------------------------------------------------------------|---------------------------------------------|
| Characteristic resistance for static and quasi static action           | See appendix, especially Annexes C 1 to C 3 |
| Characteristic resistance for seismic performance categories C1 and C2 | See appendix, especially Annexes C 6 to C 7 |
| Displacements under static and quasi static action                     | See appendix, especially Annex C 8          |
| Displacements under seismic action                                     | See appendix, especially Annex C 9          |

### Safety in case of fire (BWR 2)

| Essential characteristic                      | Performance                                   |
|-----------------------------------------------|-----------------------------------------------|
| Reaction to fire                              | Anchorages satisfy requirements for Class A 1 |
| Characteristic resistance under fire exposure | See appendix, especially Annexes C 4 + C 5    |

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mylal

Tumlingen, 2016-08-16

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

### **Specific Part**

### 1 Technical description of the product

The fischer Bolt Anchor FAZ II is an anchor made of galvanised steel (FAZ II) or made of stainless steel (FAZ II A4) or high corrosion resistant steel (FAZ II C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

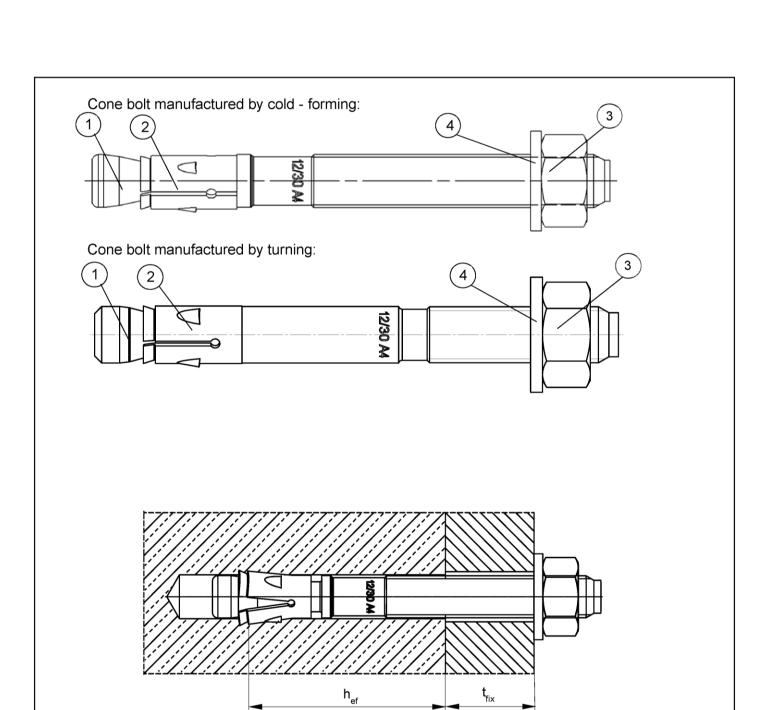
### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                               | Performance          |  |  |  |
|------------------------------------------------------------------------|----------------------|--|--|--|
| Characteristic resistance for static and quasi static action           | See Annex C 1 to C 3 |  |  |  |
| Characteristic resistance for seismic performance categories C1 and C2 | See Annex C 6 to C 7 |  |  |  |
| Displacements under static and quasi static action                     | See Annex C 8        |  |  |  |
| Displacements under seismic action                                     | See Annex C 9        |  |  |  |

### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic                      | Performance                                  |
|-----------------------------------------------|----------------------------------------------|
| Reaction to fire                              | Anchorages satisfy requirements for Class A1 |
| Characteristic resistance under fire exposure | See Annex C 4 and C 5                        |


### 3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

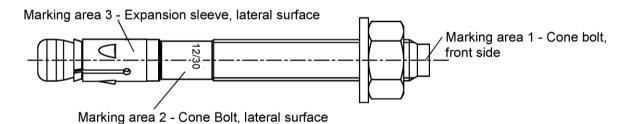
# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1



- 1 Cone bolt (cold – formed or turned)
- 2 Expansion sleeve
- 3 Hexagon nut
- 4 Washer


 $egin{array}{lll} h_{ef} &=& Effective anchorage depth \\ t_{fix} &=& Thickness of fixture \end{array}$ 

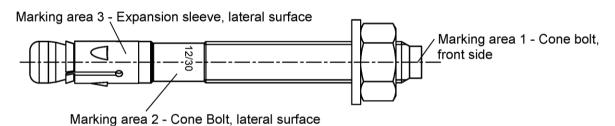
fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

**Product description** Installed condition

Annex A 1

# FAZ II for use with standard and reduced anchorage depth (hef, sta and hef, red):




Product label, example: FAZ II 12/10 A4

Brand | type of anchor placed on marking area 2 or marking area 3 identification A4 placed on marking area 2

Table A1: Letter-code on marking area 1 and maximum thickness of fixture t<sub>fix</sub>:

| marking                                        |             | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (l) | (K) | (L) | (M) | (N) | (O) | (P) | (R) | (S) | (T) | (U) | (V) | (W) | (X) | (Y) | (Z) |
|------------------------------------------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| max. t <sub>fix</sub> for h <sub>ef, sta</sub> | M8-M24      | 5   | 10  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 60  | 70  | 80  | 90  | 100 | 120 | 140 | 160 | 180 | 200 | 250 | 300 | 350 | 400 |
| max. t <sub>fix</sub> for h <sub>ef, red</sub> | M10-<br>M16 | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  | 70  | 80  | 90  | 100 | 110 | 120 | 140 | 160 | 180 | 200 | 220 | 270 | 320 | 370 | 420 |

# FAZ II K for use with reduced anchorage depth only (h<sub>ef, red</sub>):



Product label, example:

Brand | type of anchor placed on marking area 2 or marking area 3

| Thread size / max. thickness of fixture (t<sub>fix</sub>) identification K for h<sub>ef, red</sub> identification A4 placed on marking area 2

**Table A2:** Letter-code on marking area 1 and maximum thickness of fixture  $t_{\rm fi}$ :

| marking                                           |        | (a) | (b) | (c) | (d) |
|---------------------------------------------------|--------|-----|-----|-----|-----|
| max. t <sub>fix</sub><br>for h <sub>ef, red</sub> | M8-M16 | 5   | 10  | 15  | 20  |

Identification for hef, red are lower-case letters

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C |           |
|-------------------------------------------------|-----------|
| Product description Anchor Types                | Annex A 2 |

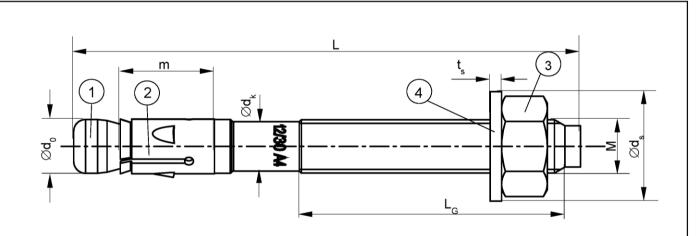



Table A3: Anchor dimensions [mm]

| Part   | Designation          |                  | FAZ    | Z II, FAZ I | I A4, FAZ | II C |      |      |      |
|--------|----------------------|------------------|--------|-------------|-----------|------|------|------|------|
| Part   | Designation          |                  |        | М8          | M10       | M12  | M16  | M20  | M24  |
|        |                      | thread           | size M | M8          | M10       | M12  | M16  | M20  | M24  |
| ١,     | 1 Cone bolt          | $\emptyset d_0$  |        | 7,8         | 9,8       | 11,8 | 15,7 | 19,8 | 23,5 |
| 1      |                      | $\emptyset d_k$  |        | 7,1         | 8,9       | 10,7 | 14,5 | 18,2 | 21,8 |
|        |                      |                  | ≥      | 19          | 26        | 31   | 40   | 50   | 57   |
| 2      | O Francisco alacres  |                  |        | 17,8        | 20,0      | 20,6 | 27,5 | 33,4 | 40,2 |
|        | Expansion sleeve     | sheet thickness  |        | 1,3         | 1,4       | 1,6  | 2,4  | 2,4  | 3,0  |
| 3      | Hexagon nut          | wrench           | size   | 13          | 17        | 19   | 24   | 30   | 36   |
|        | Machan               | ts               | ≥      | 1,4         | 1,8       | 2,3  | 2,7  | 2,7  | 3,7  |
| 4      | Washer               | Ø d <sub>s</sub> | ≥      | 15          | 19        | 23   | 29   | 36   | 43   |
| Thicke | and of finding       | t <sub>fix</sub> | ≥      | 0           | 0         | 0    | 0    | 0    | 0    |
| Inickn | Thickness of fixture |                  | ≤      | 200         | 250       | 300  | 400  | 500  | 600  |
| Longth | Length of anchor     |                  | =      | 54,5        | 64,5      | 79   | 102  | 141  | 174  |
| Lengtr | i oi anchor          | L <sub>max</sub> | =      | 267         | 336       | 401  | 525  | 644  | 777  |

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C |           |
|-------------------------------------------------|-----------|
| Product description Anchor dimensions           | Annex A 3 |

Table A4: Materials FAZ II

| Part | Designation      | Material                                                                                                                         |
|------|------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1    | Cone bolt        | Cold form steel or free cutting steel (zinc plated)<br>Nominal steel tensile strength: $f_{uk} \le 1000 \text{ N/mm}^2$ (thread) |
| 2    | Expansion sleeve | Cold strip, EN 10139:2016 (zinc plated) <sup>1)</sup>                                                                            |
| 3    | Hexagon nut      | Steel, property class min. 8, EN ISO 898-2:2012 (zinc plated)                                                                    |
| 4    | Washer           | Cold strip, EN 10139: 2016 (zinc plated)                                                                                         |

<sup>1)</sup> Optional stainless steel EN 10088:2014

# Table A5: Materials FAZ II A4

| Part | Designation      | Material                                                                                               |
|------|------------------|--------------------------------------------------------------------------------------------------------|
| 1    | Cone bolt        | stainless steel EN 10088:2014<br>Nominal steel tensile strength: f <sub>uk</sub> ≤ 1000 N/mm² (thread) |
| 2    | Expansion sleeve | stainless steel EN 10088:2014                                                                          |
| 3    | Hexagon nut      | stainless steel EN 10088:2014;<br>ISO 3506-2: 2009; property class – min. 70                           |
| 4    | Washer           | stainless steel EN 10088:2014                                                                          |

# Table A6: Materials FAZ II C

| Part                                                                                                                           | Designation      | Material                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|
| 1 Cone bolt high corrosion resistant steel EN 10088:2014 Nominal steel tensile strength: f <sub>uk</sub> ≤ 1000 N/mm² (thread) |                  |                                                                                            |
| 2                                                                                                                              | Expansion sleeve | stainless steel EN 10088:2014                                                              |
| 3                                                                                                                              | Hexagon nut      | high corrosion resistant steel EN 10088:2014;<br>ISO 3506-2:2009; property class – min. 70 |
| 4                                                                                                                              | Washer           | high corrosion resistant steel EN 10088:2014                                               |

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C |           |
|-------------------------------------------------|-----------|
| Product description Materials                   | Annex A 4 |

## Specifications of intended use

Anchorages subject to:

| nenorages subject to:                   |                  |                  |             |         |
|-----------------------------------------|------------------|------------------|-------------|---------|
| Standard anchorage depth                |                  |                  | ✓           |         |
| Bolt Anchor FAZ II, FAZ II A4, FAZ II C |                  | M8               | M10 M12 M16 | M20 M24 |
| Static and quasi-static loads           |                  |                  | <b>✓</b>    |         |
| Cracked and uncracked concrete          |                  |                  | ✓           |         |
| Fire exposure                           |                  |                  | ✓           |         |
| Seismic action for Performance Category | C1               |                  | ✓           |         |
| Seismic action for Performance Category | C2 <sup>1)</sup> | -                | <b>✓</b>    | -       |
| Reduced anchorage depth                 |                  |                  | ✓           |         |
| Bolt Anchor FAZ II, FAZ II A4, FAZ II C |                  | M8 <sup>2)</sup> | M10 M12 M16 |         |
| Static and quasi-static loads           |                  |                  | ✓           |         |
| Cracked and uncracked concrete          |                  |                  | <b>√</b>    | -       |
| Fire exposure                           |                  |                  | ✓           |         |
| Sajamia action for Darformanas Catagony | C1               |                  | ✓           |         |
| Seismic action for Performance Category | C2 <sup>1)</sup> | -                | ✓           | 7       |

<sup>&</sup>lt;sup>1)</sup> FAZ II C: Only valid for cold-formed version (see A1)

#### Base materials:

- Reinforced and unreinforced normal weight concrete (cracked and uncracked) according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

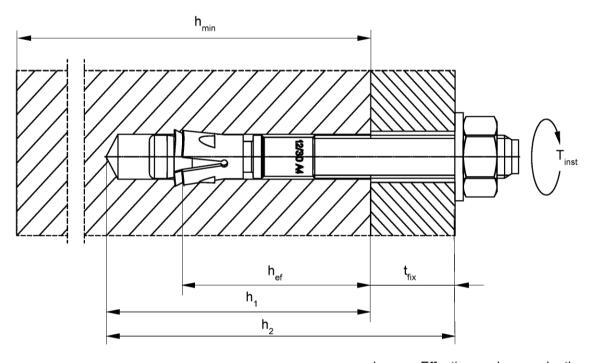
### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FAZ II, FAZ II A4, FAZ II C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (FAZ II A4, FAZ II C)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (FAZ II C)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

### Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
  or to supports, etc.)
- · Anchorages under static or quasi-static actions are to be designed in accordance with:
  - ETAG 001, Annex C, design method A, Edition August 2010 or
  - CEN/TS 1992-4:2009, design method A
- · Anchorages under seismic actions (cracked concrete) are to be designed in accordance with:
  - EOTA Technical Report TR 045, Edition February 2013
  - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
  - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed
- Anchorages under fire exposure are to be designed in accordance with:
  - EOTA Technical Report TR 020, Edition May 2004 or
  - CEN/TS 1992-4:2009, Annex D
  - It must be ensured that local spalling of the concrete cover does not occur


| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C |           |
|-------------------------------------------------|-----------|
| Intended Use<br>Specifications                  | Annex B 1 |

<sup>2)</sup> Use restricted to anchoring of structural components which are statically indeterminate

Table B1: Installation parameters

| Type of anchor / size                                   |                               |                  | FAZ II, FAZ II A4, FAZ II C |      |      |       |       |  |  |
|---------------------------------------------------------|-------------------------------|------------------|-----------------------------|------|------|-------|-------|--|--|
| Type of afficion / size                                 |                               | M8               | M10                         | M12  | M16  | M20   | M24   |  |  |
| Nominal drill hole diameter                             | $d_0 = [mm]$                  | 8                | 10                          | 12   | 16   | 20    | 24    |  |  |
| Cutting diameter of drill bit                           | $d_{cut} \leq [mm]$           | 8,45             | 10,45                       | 12,5 | 16,5 | 20,55 | 24,55 |  |  |
| Standard anchorage depth                                | $h_{\text{ef,sta}} \geq [mm]$ | 45               | 60                          | 70   | 85   | 100   | 125   |  |  |
| Depth of drill hole in concrete for h <sub>ef,sta</sub> | $h_{1,\text{sta}} \geq [mm]$  | 55               | 75                          | 90   | 110  | 125   | 155   |  |  |
| Reduced anchorage depth                                 | $h_{\text{ef,red}} \geq [mm]$ | 35 <sup>2)</sup> | 40                          | 50   | 65   | -     | 1     |  |  |
| Depth of drill hole in concrete for h <sub>ef,red</sub> | $h_{1,\text{red}} \geq [mm]$  | 45 <sup>2)</sup> | 55                          | 70   | 90   | -     | ı     |  |  |
| Diameter of clearance hole in the fixture <sup>1)</sup> | $d_f \! \leq \! \text{ [mm]}$ | 9                | 12                          | 14   | 18   | 22    | 26    |  |  |
| Required torque moment                                  | $T_{inst} = [Nm]$             | 20               | 45                          | 60   | 110  | 200   | 270   |  |  |

<sup>1)</sup> If a larger diameter of the clearance hole in the fixture is used, see Chapter 4.2.2.1 of ETAG 001, Annex C 2) Use restricted to anchoring of structural components which are statically indeterminate



 $egin{array}{lll} h_{ef} &=& Effective anchorage depth \\ t_{fix} &=& Thickness of fixture \end{array}$ 

 $h_1$  = Drill hole depth

h<sub>2</sub> = Min.drill hole depth for push-through

installation

 $h_{min}$  = Thickness of concrete member  $T_{inet}$  = Required torque moment

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C |           |
|-------------------------------------------------|-----------|
| Intended Use Installation parameters            | Annex B 2 |

**Table B2:** Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for **standard anchorage depth** (h<sub>ef, sta</sub>)

| Type of anchor / size                                                     |                                                               | FAZ II, FAZ II A4, FAZ II C |     |     |     |     |     |     |
|---------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-----|-----|-----|-----|-----|-----|
|                                                                           | Type of afford / size                                         |                             |     | M10 | M12 | M16 | M20 | M24 |
| Standard                                                                  | Standard effective anchorage depth h <sub>ef,sta</sub> ≥ [mm] |                             |     | 60  | 70  | 85  | 100 | 125 |
| ω                                                                         | Minimum thickness of concrete member                          | h <sub>min, 1</sub> [mm]    | 100 | 120 | 140 | 170 | 200 | 250 |
| ret                                                                       | Uncracked concrete                                            |                             |     |     |     |     |     |     |
| s with concrete<br>of thickness<br>x h <sub>ef,sta</sub>                  | Minimum spacing -                                             | s <sub>min</sub> [mm]       | 40  | 40  | 50  | 65  | 95  | 100 |
| ick a                                                                     | Willindin spacing                                             | for c ≥ [mm]                | 50  | 60  | 70  | 95  | 180 | 200 |
| s with c<br>of thick<br>x h <sub>ef,sta</sub>                             | Minimum edge distance                                         | c <sub>min</sub> [mm]       | 40  | 45  | 55  | 65  | 95  | 135 |
|                                                                           |                                                               |                             | 100 | 80  | 110 | 150 | 190 | 235 |
| Applications<br>members c<br>≥ 2 x                                        | Cracked concrete                                              |                             |     |     |     |     |     |     |
| ica<br>mk                                                                 | Minimum spacing                                               | s <sub>min</sub> [mm]       | 35  | 40  | 50  | 65  | 95  | 100 |
| <u> </u>                                                                  | Willindin spacing                                             | for c ≥ [mm]                | 50  | 55  | 70  | 95  | 140 | 170 |
| ₹                                                                         | Minimum edge distance                                         | c <sub>min</sub> [mm]       | 40  | 45  | 55  | 65  | 85  | 100 |
|                                                                           | willindin edge distance                                       | for $s \ge [mm]$            | 70  | 80  | 110 | 150 | 190 | 220 |
| Applications with concrete members of thickness < 2 x h <sub>ef,sta</sub> | Minimum thickness of concrete member h <sub>min, 2</sub> [mm] |                             | 80  | 100 | 120 | 140 | 160 | 200 |
| s w<br>nbe                                                                | Cracked and uncracked con                                     | crete                       |     |     |     |     |     |     |
| Applications with<br>increte members<br>ickness < 2 x h <sub>ef,s</sub>   | Minimum spacing -                                             | s <sub>min</sub> [mm]       | 35  | 40  | 50  | 80  | 125 | 150 |
| licar                                                                     | willing spacing                                               | for c ≥ [mm]                | 70  | 100 | 90  | 130 | 220 | 230 |
| Applicati<br>concrete n<br>thickness                                      | Minimum edge distance                                         | c <sub>min</sub> [mm]       | 40  | 60  | 60  | 65  | 125 | 135 |
| <br>cor<br>thi                                                            | willimidili edge distance                                     | for $s \ge [mm]$            | 100 | 90  | 120 | 180 | 230 | 235 |

Intermediate values for  $s_{min}$  and  $c_{min}$  inside of the same thickness of concrete member by linear interpolation.

**Table B3:** Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for **reduced anchorage depth (h**<sub>ef, red</sub>)

|                                          | Type of anchor / size                |                                 |                  | Z II, FAZ | II A4, FAZ | II C |
|------------------------------------------|--------------------------------------|---------------------------------|------------------|-----------|------------|------|
| Type of anchor / size                    |                                      | М8                              | M10              | M12       | M16        |      |
| Reduced                                  | effective anchorage depth            | $\mathbf{h}_{ef,red} \geq [mm]$ | 35 <sup>1)</sup> | 40        | 50         | 65   |
| a o                                      | Minimum thickness of concrete member | h <sub>min, 3</sub> [mm]        | 80               | 80        | 100        | 140  |
| ret                                      | Uncracked concrete                   |                                 |                  |           |            |      |
| concrete<br>kness                        | Minimum anacina                      | s <sub>min</sub> [mm]           | 40               | 40        | 50         | 65   |
| e ick                                    | Minimum spacing                      | for c ≥ [mm]                    | 100              | 100       | 110        | 130  |
| with concre<br>of thickness<br>K her,red | Minimum edge distance                | c <sub>min</sub> [mm]           | 45               | 45        | 55         | 65   |
| s of x i                                 | winimum edge distance                | for $s \ge [mm]$                | 180              | 180       | 220        | 250  |
| tion<br>sers                             | Cracked concrete                     |                                 |                  |           |            |      |
| pplications<br>members<br>≥ 2            | Minimum anacina                      | s <sub>min</sub> [mm]           | 40               | 40        | 50         | 65   |
| Applications<br>members c<br>≥ 2 x       | Minimum spacing                      | for c ≥ [mm]                    | 90               | 90        | 110        | 130  |
| Ā                                        | Minimum odgo diotonoo                | c <sub>min</sub> [mm]           | 45               | 45        | 55         | 65   |
|                                          | Minimum edge distance                | for s ≥ [mm]                    | 180              | 180       | 220        | 250  |

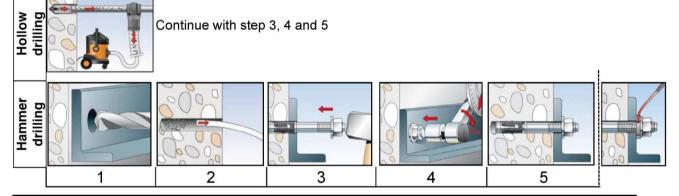
Intermediate values for s<sub>min</sub> and c<sub>min</sub> by linear interpolation.

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

Intended Use
Minimum thickness of member, minimum spacings and edge distances

Annex B 3

<sup>1)</sup> Only in anchoring structural components which are statically indeterminate


Table B4: Minimum spacings and minimum edge distances of anchors according to TR 020 and ETAG 001, Annex C under fire exposure and according to CEN/TS 1992-4: 2009, Annex D under fire exposure

| Type of anchor / size |                  |      | FAZ II, FAZ II A4, FAZ II C                                                                  |     |     |     |     |     |
|-----------------------|------------------|------|----------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| Туре о                | i anchoi / s     | Ze   | M8                                                                                           | M10 | M12 | M16 | M20 | M24 |
| Spacing               | S <sub>min</sub> | [mm] | 35                                                                                           | 40  | 50  | 60  | 95  | 100 |
| Edge<br>distance      | C <sub>min</sub> | [mm] | $c_{min} = 2 \times h_{ef}$ , for fire exposure from more than one side $c_{min} \ge 300$ mm |     |     |     |     |     |

### Installation instructions

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- · Edge distances and spacing not less than the specified values without minus tolerances
- Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application



| No. | Description                                                         |                                                        |  |  |  |  |
|-----|---------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| 1   | Create drill hole with hammer drill                                 | Create drill hole with hollow drill and vacuum cleaner |  |  |  |  |
| 2   | Clean bore hole                                                     | -                                                      |  |  |  |  |
| 3   | Set anchor                                                          |                                                        |  |  |  |  |
| 4   | Expand anchor with prescribed installation torque T <sub>inst</sub> |                                                        |  |  |  |  |
| 5   | Finished installation                                               |                                                        |  |  |  |  |
|     | <u> </u>                                                            | -                                                      |  |  |  |  |

| Optional | The gap between bolt and fixture may be filled with mortar; compressive strength ≥ |
|----------|------------------------------------------------------------------------------------|
|          | 50 N/mm² for example: FIS V, FIS EM, FIS HB or FIS SB.                             |

| Types of drills |           |  |  |
|-----------------|-----------|--|--|
| Hammer drill    | 200000000 |  |  |
| Hollow drill    |           |  |  |

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

### Intended Use

Annex B 4

Minimum spacings and minimum edge distances of anchors Installation parameters

Table C1: Characteristic values of tension resistance for standard anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

| Type of anchor / size                                                             |                                |           | FAZ II, FAZ II A4, FAZ II C |          |          |                   |                        |       |  |
|-----------------------------------------------------------------------------------|--------------------------------|-----------|-----------------------------|----------|----------|-------------------|------------------------|-------|--|
| Type of anchor / size                                                             |                                |           | M8                          | M10      | M12      | M16               | M20                    | M24   |  |
| Steel failure for standard anchorage                                              | edepth                         |           |                             |          |          |                   |                        |       |  |
| Characteristic resistance FAZ II                                                  | $N_{Rk,s}$                     | [kN]      | 16,0                        | 27,0     | 41,5     | 66,0              | 111,0                  | 150,0 |  |
| FAZ II A4/C                                                                       | $N_{Rk,s}$                     | [kN]      | 17,0                        | 27,2     | 44,3     | 70,6              | 111,0                  | 160,8 |  |
| Partial safety factor                                                             | γ̃Ms                           |           |                             |          |          | 1,5               |                        |       |  |
| Pullout failure for standard anchora                                              | ige depth                      | ו         |                             |          |          |                   |                        |       |  |
| Effective anchorage depth                                                         | $h_{\text{ef,sta}} \geq$       | [mm]      | 45                          | 60       | 70       | 85                | 100                    | 125   |  |
| Characteristic resistance in cracked concrete C20/25                              | $N_{Rk,p}$                     | [kN]      | 7,5                         | 12       | 20       |                   | _ 1)                   |       |  |
| Characteristic resistance in uncracked concrete C20/25                            | $N_{Rk,p}$                     | [kN]      | 9                           | 16       | 25       |                   | <b>-</b> <sup>1)</sup> |       |  |
|                                                                                   |                                | C25/30    |                             |          |          | ,10               |                        |       |  |
|                                                                                   |                                | C30/37    |                             |          |          | ,22               |                        |       |  |
| Increasing factors for N <sub>Rk,p</sub> for                                      | Ψς                             | C35/45    |                             |          |          | ,34               |                        |       |  |
| cracked and uncracked concrete                                                    | 40                             | C40/50    |                             |          |          | ,41               |                        |       |  |
|                                                                                   |                                | C45/55    |                             |          |          | ,48               |                        |       |  |
| Landa Hadina and a factor franchis                                                | 3) 4                           | C50/60    |                             |          |          | ,55<br>1.0        |                        |       |  |
| Installation safety factor                                                        | $\gamma_2$ = $\gamma_{inst}$   | <i>'</i>  |                             |          |          | 1,0               |                        |       |  |
| Concrete cone and splitting failure members of thickness ≥ 2x h <sub>ef.sta</sub> | for stand                      | lard ancr | iorage                      | depth ir | і аррііс | ations v          | vith con               | crete |  |
| Effective anchorage depth                                                         | h <sub>ef</sub>                | [mm]      | 45                          | 60       | 70       | 85                | 100                    | 125   |  |
| Factor for uncracked concrete                                                     | k <sub>ucr</sub> <sup>4)</sup> | [-]       |                             |          |          | 0,1               |                        |       |  |
| Factor for cracked concrete                                                       | k <sub>cr</sub>                | [-]       |                             |          |          | 7,2               |                        |       |  |
| Min. thickness of concrete member                                                 | h <sub>min,1</sub>             | [mm]      | 100                         | 120      | 140      | 170               | 200                    | 250   |  |
| Characteristic spacing                                                            | S <sub>cr,N</sub>              | [mm]      |                             |          | 3        | h <sub>ef</sub>   |                        |       |  |
| Characteristic edge distance                                                      | C <sub>cr,N</sub>              | [mm]      |                             |          |          | 5 h <sub>ef</sub> |                        |       |  |
| Spacing (splitting failure) <sup>2)</sup>                                         | S <sub>cr,sp</sub>             | [mm]      | 140                         | 180      | 210      | 260               | 370                    | 430   |  |
| Edge distance (splitting failure) <sup>2)</sup>                                   | C <sub>cr,sp</sub>             | [mm]      | 70                          | 90       | 105      | 130               | 185                    | 215   |  |
| Concrete cone and splitting failure members of thickness < 2x h <sub>ef.sta</sub> |                                | lard anch | orage                       | depth ir | applic   | ations v          | vith con               | crete |  |
| Effective anchorage depth                                                         | h <sub>ef</sub>                | [mm]      | 45                          | 60       | 70       | 85                | 100                    | 125   |  |
| Factor for uncracked concrete                                                     | k <sub>ucr</sub> <sup>4)</sup> | [-]       |                             |          | 1        | 0,1               |                        |       |  |
| Factor for cracked concrete                                                       | k <sub>cr</sub>                | [-]       |                             |          | 7        | 7,2               |                        |       |  |
| Min. thickness of concrete member                                                 | h <sub>min,2</sub>             | [mm]      | 80                          | 100      | 120      | 140               | 160                    | 200   |  |
| Characteristic spacing                                                            | S <sub>cr,N</sub>              | [mm]      |                             |          | 3        | h <sub>ef</sub>   |                        |       |  |
| Characteristic edge distance                                                      | C <sub>cr,N</sub>              | [mm]      |                             |          | 1,       | 5 h <sub>ef</sub> |                        |       |  |
| Spacing (splitting failure) <sup>2)</sup>                                         | S <sub>cr,sp</sub>             | [mm]      | 180                         | 240      | 280      | 340               | 480                    | 550   |  |
| opacing (spirting failure)                                                        | CI,SP                          |           |                             |          |          |                   |                        |       |  |

<sup>1)</sup> Pullout failure not relevant.

<sup>&</sup>lt;sup>4)</sup> Parameter relevant for design according to CEN/TS 1992-4:2009

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C                                                   |           |
|---------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under tension loads for standard anchorage depth | Annex C 1 |

<sup>&</sup>lt;sup>2)</sup> Intermediate values for  $s_{cr,sp}$  and  $c_{cr,sp}$  between concrete thickness  $h_{min,2}$  and  $h_{min,1}$  by linear interpolation. <sup>3)</sup> Parameter relevant for design according to ETAG 001, Annex C

Table C2: Characteristic values of tension resistance for reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or **CEN/TS 1992-4:2009**)

| Type of anchor / size                                 |                                        |        |                  | FAZ II, FAZ | Z II A4, FAZ           | ZIIC |
|-------------------------------------------------------|----------------------------------------|--------|------------------|-------------|------------------------|------|
| Type of afficitor / size                              |                                        |        | M8               | M10         | M12                    | M16  |
| Steel failure for reduced anchorage                   | depth                                  |        |                  |             |                        |      |
| FAZ II                                                | $N_{Rk,s}$                             | [kN]   | 16,0             | 27,0        | 41,5                   | 66,0 |
| Characteristic resistance FAZ II A4/C                 | $N_{Rk,s}$                             | [kN]   | 17,0             | 27,2        | 44,3                   | 70,6 |
| Partial safety factor                                 | γMs                                    |        |                  |             | 1,5                    |      |
| Pullout failure for reduced anchora                   | ge depth                               |        |                  |             |                        |      |
| Effective anchorage depth                             | $h_{\text{ef,red}} \geq$               | [mm]   | 35 <sup>2)</sup> | 40          | 50                     | 65   |
| Characteristic resistance in cracked concrete C20/25  | $N_{Rk,p}$                             | [kN]   | 5                |             | <b>-</b> <sup>1)</sup> |      |
| Characteristic resistance in uncracked concrete 20/25 | $N_{Rk,p}$                             | [kN]   |                  |             | - <sup>1)</sup>        |      |
|                                                       |                                        | C25/30 |                  | ,           | 1,10                   |      |
|                                                       |                                        | C30/37 |                  |             | 1,22                   |      |
| Increasing factors for N <sub>Rk,p</sub> for          | Ψс                                     | C35/45 |                  |             | 1,34                   |      |
| cracked and uncracked concrete                        | Ψ¢                                     | C40/50 |                  |             | 1,41                   |      |
|                                                       |                                        | C45/55 |                  |             | 1,48                   |      |
|                                                       |                                        | C50/60 |                  | ,           | 1,55                   |      |
| Installation safety factor                            | $\gamma_2^{(3)} = \gamma_{inst}^{(4)}$ | )      |                  |             | 1,0                    |      |
| Concrete cone and splitting failure                   | for reduc                              |        | orage dep        |             |                        |      |
| Effective anchorage depth                             | h <sub>ef</sub>                        | [mm]   | 35 <sup>2)</sup> | 40          | 50                     | 65   |
| Factor for uncracked concrete                         | K <sub>ucr</sub> ′                     | [-]    |                  | •           | 10,1                   |      |
| Factor for cracked concrete                           | k <sub>cr</sub> <sup>4)</sup>          | [-]    |                  |             | 7,2                    |      |
| Min. thickness of concrete member                     | $h_{min,3}$                            | [mm]   | 80               | 80          | 100                    | 140  |
| Characteristic spacing                                | S <sub>cr,N</sub>                      | [mm]   |                  | ;           | 3 h <sub>ef</sub>      |      |
| Characteristic edge distance                          | C <sub>cr,N</sub>                      | [mm]   |                  | 1           | ,5 h <sub>ef</sub>     |      |
| Spacing (splitting failure)                           | S <sub>cr,sp</sub>                     | [mm]   | 140              | 160         | 200                    | 260  |
| Edge distance (splitting failure)                     | $C_{cr,sp}$                            | [mm]   | 70               | 80          | 100                    | 130  |

<sup>1)</sup> Pullout failure not relevant.

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C                                            |           |
|--------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under tension for reduced anchorage depth | Annex C 2 |

<sup>2)</sup> Use restricted to anchoring of structural components which are statically indeterminate 3) Parameter relevant for design according to ETAG 001, Annex C

<sup>&</sup>lt;sup>4)</sup> Parameter relevant for design according to CEN/TS 1992-4:2009

Table C3: Characteristic values of shear resistance for standard and reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

| Time of analysis                                                   |               |                                    |                                 |         | FAZ     | II, FAZ | II A4, F | AZ II C |       |
|--------------------------------------------------------------------|---------------|------------------------------------|---------------------------------|---------|---------|---------|----------|---------|-------|
| Type of anchor / size                                              |               |                                    |                                 | М8      | M10     | M12     | M16      | M20     | M24   |
| Steel failure without lever                                        | r arm for sta | ndard ar                           | nd reduce                       | ed anch | orage d | lepth   |          |         |       |
| Ob ana atamiatia na aiatana a                                      | FAZ II        | $V_{Rk,s}$                         | FL-N 17                         | 12,0    | 20,0    | 29,5    | 55,0     | 70,0    | 86,0  |
| Characteristic resistance                                          | FAZ II A4/0   |                                    | — [kN]                          | 17,6    | 23,8    | 36,5    | 70,9     | 94,4    | 138,2 |
| Partial safety factor                                              |               | γMs                                |                                 |         |         | 1       | ,25      |         |       |
| Factor for ductility                                               |               | k <sub>2</sub> <sup>2)</sup>       | [-]                             |         |         |         | 1,0      |         |       |
|                                                                    | 5             | Standard                           | anchora                         | ge dept | th      |         |          |         |       |
| Steel failure with lever ar                                        | m             |                                    |                                 |         |         |         |          |         |       |
| Characteristic bending                                             | FAZ II        | $M^0_{Rk,s}$                       | – [Nm]                          | 26      | 52      | 92      | 233      | 487     | 769   |
| resistance                                                         | FAZ II A4/0   | C M <sup>0</sup> <sub>Rk,s</sub>   | [INIII]                         | 29      | 56      | 94      | 256      | 454     | 785   |
| Partial safety factor                                              |               | γMs                                |                                 |         |         | 1       | ,25      |         |       |
| Factor for ductility                                               |               | $k_2^{(2)}$                        | [-]                             |         |         |         | 1,0      |         |       |
| Concrete pryout failure                                            |               |                                    |                                 |         |         |         |          |         |       |
| Factor k according to ETAG or k <sub>3</sub> according to CEN/TS 1 |               | k <sup>1)</sup> =k <sub>(3</sub>   | <sub>3)</sub> <sup>2)</sup> [-] | 2       | ,2      | 2,4     |          | 2,8     |       |
| Concrete edge failure                                              |               |                                    |                                 |         |         |         |          |         |       |
| Effective length of<br>anchor in shear loading                     |               | I <sub>f</sub>                     | [mm]                            | 45      | 60      | 70      | 85       | 100     | 125   |
| Effective diameter of ancho                                        |               | $d_{nom}$                          | [mm]                            | 8       | 10      | 12      | 16       | 20      | 24    |
| Installation safety factor                                         |               | $\gamma_2^{(1)} = \gamma_{inst}^2$ | )                               |         |         |         | 1,0      |         |       |
|                                                                    | F             | Reduced                            | anchora                         | ge dept | :h      |         |          |         |       |
| Steel failure with lever ar                                        |               |                                    |                                 |         |         |         |          |         |       |
| Characteristic bending                                             | FAZ II        | M <sup>0</sup> <sub>Rk,s</sub>     | _ [Nm]                          | 15      | 38,3    | 89      | 171      | -       | -     |
| resistance                                                         | FAZ II A4/0   | C M <sup>0</sup> <sub>Rk,s</sub>   | []                              | 18,9    | 38,3    | 90,7    | 179,5    | -       | -     |
| Partial safety factor                                              |               | γMs                                |                                 |         |         | 1       | ,25      |         |       |
| Factor for ductility                                               |               | $k_2^{(2)}$                        | [-]                             |         |         |         | 1,0      |         |       |
| Concrete pryout failure                                            |               |                                    |                                 |         |         |         |          |         |       |
| Factor k according to ETAG or k <sub>3</sub> according to CEN/TS 1 |               | $k^{1)} = k_0$                     | 3) <sup>2)</sup> [-]            | 1,0     | 2,0     | 2       | ,3       | -       | -     |
| Concrete edge failure                                              |               |                                    |                                 |         |         |         |          |         |       |
| Effective length of anchor in shear loading                        |               | I <sub>f</sub>                     | [mm]                            | 35      | 40      | 50      | 65       | -       | -     |
|                                                                    |               |                                    |                                 |         |         |         |          |         |       |

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C                    |           |
|--------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under shear loads | Annex C 3 |

<sup>&</sup>lt;sup>1)</sup>Parameter relevant for design according to ETAG 001, Annex C
<sup>2)</sup>Parameter relevant for design according to CEN/TS 1992-4:2009

Table C4: Characteristic values of tension resistance under fire exposure in cracked and uncracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4: 2009, Annex D)

| Type of anchor / size                                                              | Fire res                                                                            | R30<br>sistance 30                                                                | minutes                                                                             | <b>R60</b> Fire resistance 60 minutes                                       |                                                                                                    |                                                                                                        |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| FAZ II, FAZ II A4, FAZ II C                                                        | N <sub>Rk,s,fi,30</sub><br>[kN]                                                     | N <sub>Rk,p,fi,30</sub><br>[kN]                                                   | N <sup>0</sup> <sub>Rk,c,fi,30</sub><br>[kN]                                        | N <sub>Rk,s,fi,60</sub><br>[kN]                                             | $N_{Rk,p,fi,60}$ [kN]                                                                              | N <sup>0</sup> <sub>Rk,c,fi,60</sub><br>[kN]                                                           |  |
| Standard anchorage depth                                                           |                                                                                     |                                                                                   |                                                                                     |                                                                             |                                                                                                    |                                                                                                        |  |
| M8                                                                                 | 1,4                                                                                 | 2,0                                                                               | 2,4                                                                                 | 1,2                                                                         | 2,0                                                                                                | 2,4                                                                                                    |  |
| M10                                                                                | 2,8                                                                                 | 3,3                                                                               | 5,0                                                                                 | 2,3                                                                         | 3,3                                                                                                | 5,0                                                                                                    |  |
| M12                                                                                | 5,0                                                                                 | 5,0                                                                               | 7,4                                                                                 | 4,1                                                                         | 5,0                                                                                                | 7,4                                                                                                    |  |
| M16                                                                                | 9,4                                                                                 | 7,1                                                                               | 12,0                                                                                | 7,7                                                                         | 7,1                                                                                                | 12,0                                                                                                   |  |
| M20                                                                                | 14,7                                                                                | 9,0                                                                               | 18,0                                                                                | 12,0                                                                        | 9,0                                                                                                | 18,0                                                                                                   |  |
| M24                                                                                | 21,1                                                                                | 12,6                                                                              | 31,4                                                                                | 17,3                                                                        | 12,6                                                                                               | 31,4                                                                                                   |  |
| Reduced anchorage depth                                                            |                                                                                     |                                                                                   |                                                                                     |                                                                             |                                                                                                    |                                                                                                        |  |
| M8                                                                                 | $0,9^{1)}$ $(0,6)^{2)}$                                                             | 0,9 <sup>1)</sup><br>(0,6) <sup>2)</sup>                                          | $0,9^{1)}$ $(0,6)^{2)}$                                                             | 0,8 <sup>1)</sup><br>(0,6) <sup>2)</sup>                                    | 0,8 <sup>1)</sup><br>(0,6) <sup>2)</sup>                                                           | 0,8 <sup>1)</sup><br>(0,6) <sup>2)</sup>                                                               |  |
| M10                                                                                | 2,8                                                                                 | 2,3                                                                               | 1,8                                                                                 | 2,3                                                                         | 2,3                                                                                                | 1,8                                                                                                    |  |
| M12                                                                                | 5,0                                                                                 | 3,2                                                                               | 3,2                                                                                 | 4,1                                                                         | 3,2                                                                                                | 3,2                                                                                                    |  |
| M16                                                                                | 9,4                                                                                 | 4,7                                                                               | 6,1                                                                                 | 7,7                                                                         | 4,7                                                                                                | 6,1                                                                                                    |  |
| IVITO                                                                              | •, .                                                                                | 7,7                                                                               | 0, 1                                                                                | ,,,                                                                         | ٦,1                                                                                                | 0, 1                                                                                                   |  |
| WITO                                                                               | <u> </u>                                                                            | ·                                                                                 | 0,1                                                                                 | .,,                                                                         | ,                                                                                                  | 0,1                                                                                                    |  |
|                                                                                    | · · · · ·                                                                           | R90<br>sistance 90                                                                | minutes                                                                             |                                                                             | <b>R120</b><br>istance 120                                                                         | ) minutes                                                                                              |  |
|                                                                                    | · · · · ·                                                                           | R90                                                                               |                                                                                     |                                                                             | R120                                                                                               |                                                                                                        |  |
| Standard anchorage depth                                                           | Fire res                                                                            | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub>                                     | minutes                                                                             | Fire res                                                                    | <b>R120</b><br>istance 120<br>N <sub>Rk,p,fi,120</sub>                                             | ) minutes                                                                                              |  |
|                                                                                    | Fire res                                                                            | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub>                                     | minutes                                                                             | Fire res                                                                    | <b>R120</b><br>istance 120<br>N <sub>Rk,p,fi,120</sub>                                             | ) minutes                                                                                              |  |
| Standard anchorage depth                                                           | Fire res                                                                            | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub><br>[kN]                             | minutes N <sup>0</sup> <sub>Rk,c,fi,90</sub> [kN]                                   | Fire res<br>N <sub>Rk,s,fi,120</sub><br>[kN]                                | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]                                            | ) minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]                                             |  |
| Standard anchorage depth M8                                                        | Fire res                                                                            | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub><br>[kN]                             | minutes N <sup>0</sup> <sub>Rk,c,fi,90</sub> [kN]                                   | Fire res N <sub>Rk,s,fi,120</sub> [kN]                                      | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]                                            | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]                                             |  |
| Standard anchorage depth M8 M10                                                    | Fire res  N <sub>Rk,s,fi,90</sub> [kN]  0,9  1,9                                    | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub><br>[kN]<br>2,0<br>3,3               | minutes  N <sup>0</sup> <sub>Rk,c,fi,90</sub> [kN]  2,4  5,0                        | Fire res N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6                            | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6                              | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]<br>1,9<br>4,0                               |  |
| Standard anchorage depth M8 M10 M12                                                | Fire res N <sub>Rk,s,fi,90</sub> [kN]  0,9  1,9  3,2                                | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub><br>[kN]<br>2,0<br>3,3<br>5,0        | minutes  N <sup>0</sup> <sub>Rk,c,fi,90</sub> [kN]  2,4  5,0  7,4                   | Fire res N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6  2,8                       | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6<br>4,0                       | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]<br>1,9<br>4,0<br>5,9                        |  |
| Standard anchorage depth M8 M10 M12 M16                                            | Fire res  N <sub>Rk,s,fi,90</sub> [kN]  0,9  1,9  3,2  6,0                          | R90<br>sistance 90<br>N <sub>Rk,p,fi,90</sub><br>[kN]<br>2,0<br>3,3<br>5,0<br>7,1 | minutes  N <sup>0</sup> <sub>Rk,c,fi,90</sub> [kN]  2,4  5,0  7,4  12,0             | Fire res  N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6  2,8  5,2                 | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6<br>4,0<br>5,6                | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]<br>1,9<br>4,0<br>5,9<br>9,6                 |  |
| Standard anchorage depth M8 M10 M12 M16 M20                                        | Fire res N <sub>Rk,s,fi,90</sub> [kN]  0,9  1,9  3,2  6,0  9,4                      | R90 sistance 90 N <sub>Rk,p,fi,90</sub> [kN] 2,0 3,3 5,0 7,1 9,0                  | minutes  N <sup>0</sup> <sub>Rk.c.fi,90</sub> [kN]  2,4  5,0  7,4  12,0  18,0       | Fire res  N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6  2,8  5,2  8,1            | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6<br>4,0<br>5,6<br>7,2         | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]<br>1,9<br>4,0<br>5,9<br>9,6<br>14,4         |  |
| Standard anchorage depth M8 M10 M12 M16 M20 M24                                    | Fire res N <sub>Rk,s,fi,90</sub> [kN]  0,9  1,9  3,2  6,0  9,4                      | R90 sistance 90 N <sub>Rk,p,fi,90</sub> [kN] 2,0 3,3 5,0 7,1 9,0                  | minutes  N <sup>0</sup> <sub>Rk.c.fi,90</sub> [kN]  2,4  5,0  7,4  12,0  18,0       | Fire res  N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6  2,8  5,2  8,1            | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6<br>4,0<br>5,6<br>7,2         | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]<br>1,9<br>4,0<br>5,9<br>9,6<br>14,4         |  |
| Standard anchorage depth M8 M10 M12 M16 M20 M24 Reduced anchorage depth            | Fire res<br>N <sub>Rk,s,fi,90</sub> [kN]<br>0,9<br>1,9<br>3,2<br>6,0<br>9,4<br>13,5 | R90 sistance 90 N <sub>Rk,p,fi,90</sub> [kN] 2,0 3,3 5,0 7,1 9,0 12,6             | minutes  N <sup>0</sup> <sub>Rk.c.fi,90</sub> [kN]  2,4  5,0  7,4  12,0  18,0  31,4 | Fire res  N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6  2,8  5,2  8,1  11,6      | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6<br>4,0<br>5,6<br>7,2<br>10,1 | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub> [kN]<br>1,9<br>4,0<br>5,9<br>9,6<br>14,4<br>25,1    |  |
| Standard anchorage depth  M8  M10  M12  M16  M20  M24  Reduced anchorage depth  M8 | Fire res N <sub>Rk,s,fi,90</sub> [kN]  0,9  1,9  3,2  6,0  9,4  13,5                | R90 sistance 90 N <sub>Rk,p,fi,90</sub> [kN] 2,0 3,3 5,0 7,1 9,0 12,6             | minutes  N <sup>0</sup> <sub>Rk,c,fi,90</sub> [kN]  2,4  5,0  7,4  12,0  18,0  31,4 | Fire res  N <sub>Rk,s,fi,120</sub> [kN]  0,8  1,6  2,8  5,2  8,1  11,6  0,3 | R120<br>istance 120<br>N <sub>Rk,p,fi,120</sub><br>[kN]<br>1,6<br>2,6<br>4,0<br>5,6<br>7,2<br>10,1 | 0 minutes<br>N <sup>0</sup> <sub>Rk,c,fi,120</sub><br>[kN]<br>1,9<br>4,0<br>5,9<br>9,6<br>14,4<br>25,1 |  |

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

## Performances:

Characteristic values of resistance under tension loads

Annex C 4

<sup>&</sup>lt;sup>1)</sup> Values for  $s_{cr,fi}$  = 120 mm and  $c_{cr,fi}$  = 60 mm <sup>2)</sup> Values for  $s_{cr,fi}$  = 100 mm and  $c_{cr,fi}$  = 50 mm

Table C5: Characteristic values of shear resistance under fire exposure in cracked and uncracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4:2009, Annex D)

| Type of anchor / size                                                      | Fire resi                                                                 | <b>R30</b><br>stance 30 minut                                             | es                              | Fire resis                                                   | <b>R60</b><br>tance 60 minu                                                                 | tes                                    |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|
| FAZ II, FAZ II A4, FAZ II C                                                | V <sub>Rk,s,fi,30</sub><br>[kN]                                           | M <sup>0</sup> <sub>Rk,s,fi,30</sub><br>[Nm]                              | k                               | V <sub>Rk,s,fi,60</sub><br>[kN]                              | M <sup>0</sup> <sub>Rk,s,fi,60</sub><br>[Nm]                                                | k                                      |
| Standard anchorage depth                                                   |                                                                           |                                                                           |                                 |                                                              |                                                                                             |                                        |
| M8                                                                         | 1,8                                                                       | 1,4                                                                       | 2,2                             | 1,6                                                          | 1,2                                                                                         | 2,2                                    |
| M10                                                                        | 3,6                                                                       | 3,6                                                                       | 2,2                             | 2,9                                                          | 3,0                                                                                         | 2,2                                    |
| M12                                                                        | 6,3                                                                       | 7,8                                                                       | 2,4                             | 4,9                                                          | 6,4                                                                                         | 2,4                                    |
| M16                                                                        | 11,7                                                                      | 19,9                                                                      | 2,8                             | 9,1                                                          | 16,3                                                                                        | 2,8                                    |
| M20                                                                        | 18,2                                                                      | 39,0                                                                      | 2,8                             | 14,2                                                         | 31,8                                                                                        | 2,8                                    |
| M24                                                                        | 26,3                                                                      | 67,3                                                                      | 2,8                             | 20,5                                                         | 55,0                                                                                        | 2,8                                    |
| Reduced anchorage depth                                                    |                                                                           |                                                                           |                                 |                                                              |                                                                                             |                                        |
| M8                                                                         | 1,8                                                                       | 1,4                                                                       | 1,0                             | 1,6                                                          | 1,2                                                                                         | 1,0                                    |
| M10                                                                        | 3,6                                                                       | 3,6                                                                       | 2,0                             | 2,9                                                          | 3,0                                                                                         | 2,0                                    |
| M12                                                                        | 6,3                                                                       | 7,8                                                                       | 2,3                             | 4,9                                                          | 6,4                                                                                         | 2,3                                    |
| M16                                                                        | 11,7                                                                      | 20,0                                                                      | 2,3                             | 9,1                                                          | 16,3                                                                                        | 2,3                                    |
|                                                                            | ,                                                                         |                                                                           |                                 |                                                              |                                                                                             |                                        |
|                                                                            | ,                                                                         | ·                                                                         |                                 |                                                              |                                                                                             |                                        |
|                                                                            | ,                                                                         | R90<br>stance 90 minut                                                    | es                              | Fire resist                                                  | <b>R120</b><br>ance 120 minu                                                                | utes                                   |
|                                                                            | ,                                                                         |                                                                           | es<br>k                         | Fire resist<br>V <sub>Rk,s,fi,120</sub><br>[kN]              |                                                                                             | ıtes<br>k                              |
| Standard anchorage depth                                                   | Fire resi                                                                 | stance 90 minut                                                           |                                 | $V_{Rk,s,fi,120}$                                            | ance 120 minu<br>M <sup>0</sup> <sub>Rk,s,fi,120</sub>                                      |                                        |
|                                                                            | Fire resi                                                                 | stance 90 minut                                                           |                                 | $V_{Rk,s,fi,120}$                                            | ance 120 minu<br>M <sup>0</sup> <sub>Rk,s,fi,120</sub>                                      |                                        |
| Standard anchorage depth                                                   | Fire resi<br>V <sub>Rk,s,fi,90</sub><br>[kN]                              | stance 90 minut<br>M <sup>0</sup> <sub>Rk,s,fi,90</sub><br>[Nm]           | k                               | V <sub>Rk,s,fi,120</sub><br>[kN]                             | ance 120 minu<br>M <sup>0</sup> <sub>Rk,s,fi,120</sub><br>[Nm]                              | k                                      |
| Standard anchorage depth                                                   | Fire resis                                                                | stance 90 minut  M <sup>0</sup> <sub>Rk,s,fi,90</sub> [Nm]                | k 2,2                           | V <sub>Rk,s,fi,120</sub><br>[kN]                             | ance 120 minu<br>M <sup>0</sup> <sub>Rk,s,fi,120</sub><br>[Nm]<br>0,8                       | k 2,2                                  |
| Standard anchorage depth<br>M8<br>M10                                      | Fire resist V <sub>Rk,s,fi,90</sub> [kN]                                  | stance 90 minut  M <sup>0</sup> <sub>Rk,s,fi,90</sub> [Nm]  1,0  2,4      | 2,2<br>2,2                      | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9                      | ance 120 minu<br>M <sup>0</sup> <sub>Rk,s,fi,120</sub><br>[Nm]<br>0,8<br>2,1                | 2,2<br>2,2                             |
| Standard anchorage depth<br>M8<br>M10<br>M12                               | Fire resist V <sub>Rk,s,fi,90</sub> [kN] 1,3 2,2 3,5                      | stance 90 minut  M <sup>0</sup> <sub>Rk,s,fi,90</sub> [Nm]  1,0  2,4  5,0 | k 2,2 2,2 2,4                   | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9  2,8                 | 0,8<br>2,1<br>4,3                                                                           | 2,2<br>2,2<br>2,4                      |
| Standard anchorage depth M8 M10 M12 M16                                    | Fire resis<br>V <sub>Rk,s,fi,90</sub><br>[kN]<br>1,3<br>2,2<br>3,5<br>6,6 | 1,0<br>2,4<br>5,0<br>12,6                                                 | 2,2<br>2,2<br>2,4<br>2,8        | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9  2,8  5,3            | ance 120 minu<br>M <sup>0</sup> <sub>Rk,s,fi,120</sub><br>[Nm]<br>0,8<br>2,1<br>4,3<br>11,0 | 2,2<br>2,2<br>2,4<br>2,8               |
| Standard anchorage depth M8 M10 M12 M16 M20                                | Fire resist V <sub>Rk,s,fi,90</sub> [kN]  1,3  2,2  3,5  6,6  10,3        | 1,0<br>2,4<br>5,0<br>12,6<br>24,6                                         | 2,2<br>2,2<br>2,4<br>2,8<br>2,8 | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9  2,8  5,3  8,3       | 0,8<br>2,1<br>4,3<br>11,0<br>21,4                                                           | 2,2<br>2,2<br>2,4<br>2,8<br>2,8        |
| Standard anchorage depth M8 M10 M12 M16 M20 M24                            | Fire resist V <sub>Rk,s,fi,90</sub> [kN]  1,3  2,2  3,5  6,6  10,3        | 1,0<br>2,4<br>5,0<br>12,6<br>24,6                                         | 2,2<br>2,2<br>2,4<br>2,8<br>2,8 | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9  2,8  5,3  8,3       | 0,8<br>2,1<br>4,3<br>11,0<br>21,4                                                           | 2,2<br>2,2<br>2,4<br>2,8<br>2,8        |
| Standard anchorage depth M8 M10 M12 M16 M20 M24 Reduced anchorage depth    | Fire resist V <sub>Rk,s,fi,90</sub> [kN]  1,3 2,2 3,5 6,6 10,3 14,8       | 1,0<br>2,4<br>5,0<br>12,6<br>42,6                                         | k 2,2 2,2 2,4 2,8 2,8 2,8       | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9  2,8  5,3  8,3  11,9 | ance 120 minum M <sup>0</sup> <sub>Rk,s,fi,120</sub> [Nm]  0,8 2,1 4,3 11,0 21,4 37,0       | k 2,2 2,2 2,4 2,8 2,8 2,8              |
| Standard anchorage depth M8 M10 M12 M16 M20 M24 Reduced anchorage depth M8 | Fire resist V <sub>Rk,s,fi,90</sub> [kN]  1,3  2,2  3,5  6,6  10,3  14,8  | 1,0<br>2,4<br>5,0<br>12,6<br>24,6<br>42,6                                 | k 2,2 2,2 2,4 2,8 2,8 2,8       | V <sub>Rk,s,fi,120</sub> [kN]  1,2  1,9  2,8  5,3  8,3  11,9 | ance 120 minum M <sup>0</sup> <sub>Rk,s,fi,120</sub> [Nm]  0,8 2,1 4,3 11,0 21,4 37,0       | 2,2<br>2,2<br>2,4<br>2,8<br>2,8<br>2,8 |

Concrete pryout failure: In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3 the  $k_{(3)}$ -factor of Table C3 and

the relevant values of  $N_{0Rk,c,fi}$  of Table C4 have to be considered. **Concrete edge failure:** The characteristic resistance  $V^0_{Rk,c,fi}$  in concrete C20/25 to C50/60 is determined by:  $V^0_{Rk,c,fi} = 0.25 \times V^0_{Rk,c}$  (R30, R60, R90),  $V^0_{Rk,c,fi} = 0.20 \times V^0_{Rk,c}$  (R120) with  $V^0_{Rk,c}$  as initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to ETAG 001, Annex C, 5.2.3.4.

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C                                       |           |
|---------------------------------------------------------------------------------------|-----------|
| Performances: Characteristic values of resistance under shear loads and fire exposure | Annex C 5 |

**Table C6:** Valid anchor sizes for seismic design, **performance category C1, standard and reduced anchorage depth** 

| Type of ancher / size              |                                             |      | FAZ  | II, FAZ I | I A4, FA | ZIIC |     |
|------------------------------------|---------------------------------------------|------|------|-----------|----------|------|-----|
| Type of anchor / size              |                                             | M8   | M10  | M12       | M16      | M20  | M24 |
| Standard effective anchorage depth | $h_{\text{ef},\text{sta}} \geq \text{[mm]}$ | 45   | 60   | 70        | 85       | 100  | 125 |
| Thickness of fixture -             | $t_{fix,min} = [mm]$                        | 0    | 0    | 0         | 0        | 0    | 0   |
| Thickness of fixture               | $t_{fix,max} = [mm]$                        | 100  | 100  | 120       | 160      | 250  | 300 |
|                                    | $L_{min} = [mm]$                            | 54,5 | 84,5 | 99        | 122      | 141  | 174 |
| Length of anchor                   | $L_{max} = [mm]$                            | 167  | 186  | 221       | 285      | 394  | 477 |
| Reduced effective anchorage depth  | $h_{\text{ef,red}} \geq \text{[mm]}$        |      | 40   | 50        | 65       |      |     |
| This lands of first are            | $t_{fix,min} = [mm]$                        |      | 0    | 0         | 0        |      |     |
| Thickness of fixture -             | $t_{fix,max} = [mm]$                        | -    | 120  | 140       | 180      | -    | -   |
| Langth of anchor                   | L <sub>min</sub> = [mm]                     |      | 64,5 | 79        | 102      |      |     |
| Length of anchor                   | L <sub>max</sub> = [mm]                     |      | 186  | 221       | 285      |      |     |

Table C7: Valid anchor sizes for seismic design, performance category C2, standard and reduced anchorage depth

| Type of anchor / size              |                               |    | FAZI | I, FAZ II | A4, FAZ | II C 1) |     |
|------------------------------------|-------------------------------|----|------|-----------|---------|---------|-----|
| Type of afficilor / size           |                               | M8 | M10  | M12       | M16     | M20     | M24 |
| Standard effective anchorage depth | $h_{\text{ef,sta}} \geq [mm]$ |    | 60   | 70        | 85      | 100     |     |
| Thickness of fixture —             | $t_{fix,min} = [mm]$          |    | 0    | 0         | 0       | 0       |     |
| Thickness of fixture —             | $t_{fix,max} = [mm]$          | -  | 100  | 120       | 160     | 250     | -   |
| Length of anchor —                 | $L_{min} = [mm]$              |    | 84,5 | 99        | 122     | 141     |     |
|                                    | $L_{max} = [mm]$              |    | 186  | 221       | 285     | 394     |     |
| Reduced effective anchorage depth  | $h_{\text{ef,red}} \geq [mm]$ |    | 40   | 50        | 65      |         |     |
| Thickness of fixture               | $t_{fix,min} = [mm]$          |    | 0    | 0         | 0       |         |     |
| Thickness of fixture —             | $t_{fix,max} = [mm]$          | -  | 120  | 140       | 180     | -       | -   |
| Longth of anchor                   | L <sub>min</sub> = [mm]       |    | 64,5 | 79        | 102     |         |     |
| Length of anchor —                 | L <sub>max</sub> = [mm]       |    | 186  | 221       | 284,5   |         |     |

The FAZ II C: Only valid for cold-formed version (see A1)

| fischer Bolt An               | nchor FAZ II, FAZ II A4, FAZ II C         |           |
|-------------------------------|-------------------------------------------|-----------|
| Performance<br>Valid sizes in | s:<br>cracked concrete for seismic design | Annex C 6 |

Table C8: Characteristic values of tension and shear resistance for standard- and reduced anchorage depth under seismic action (Design according to TR 045: Performance category C1)

| Type of anchor / size             |                      |                             | FAZ II, FAZ II A4, FAZ II C |      |      |      |       |       |  |  |
|-----------------------------------|----------------------|-----------------------------|-----------------------------|------|------|------|-------|-------|--|--|
| Type of anchor / size             |                      |                             | М8                          | M10  | M12  | M16  | M20   | M24   |  |  |
| Steel failure                     |                      |                             |                             |      |      |      |       |       |  |  |
| Characteristic resistance tension | h <sub>ef,sta</sub>  | NI FILATI                   | 16,0                        | 27.0 | 41.0 | 66,0 | 111,0 | 150,0 |  |  |
| load C1                           | h <sub>ef,red.</sub> | INRK.S.C1[NIN]              |                             | 27,0 | 41,0 | 66,0 | -     | -     |  |  |
| Partial safety factor             |                      | γ <sub>Ms,C1</sub> [-]      |                             |      | •    | 1,5  |       |       |  |  |
| Pullout failure                   |                      |                             |                             |      |      |      |       |       |  |  |
| Characteristic resistance tension | h <sub>ef,sta</sub>  | N [LN]                      | 4,6                         | 8,0  | 16,0 | 28,2 | 36,0  | 50,3  |  |  |
| load in cracked concrete C1       | h <sub>ef,red.</sub> | $N_{Rk,p,C1}$ [kN]          | -                           | 0,0  | 16,0 | 20,2 | -     | -     |  |  |
| Installation safety factor        |                      | γ <sub>2,C1</sub> [-]       |                             |      | •    | 1,0  |       |       |  |  |
| Steel failure without lever arm   |                      |                             |                             |      |      |      |       |       |  |  |
| Characteristic resistance shear   | $h_{\text{ef,sta}}$  | V <sub>Rk,s,C1</sub> [kN]   | 11                          | 47   | 27   | 47   | 56    | 69    |  |  |
| load C1                           | h <sub>ef,red.</sub> | − V <sub>Rk,s,C1</sub> [KN] | -                           | 17   | 21   | 47   | -     | -     |  |  |
| Partial safety factor             |                      | γ <sub>Ms,C1</sub> [-]      | 1,25                        |      |      |      |       |       |  |  |

Table C9: Characteristic values of tension and shear resistance for standard- and reduced anchorage depth under seismic action (Design according to TR 045: Performance category C2)

| <del>-</del>                              |                                                                                | FAZ II, FAZ II A4, FAZ II C 1) |      |      |      |      |     |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|------|------|------|------|-----|--|--|
| Type of anchor / size                     |                                                                                | M8                             | M10  | M12  | M16  | M20  | M24 |  |  |
| Steel failure                             |                                                                                |                                |      |      |      |      |     |  |  |
| Characteristic resistance tension load C2 | $\frac{h_{\text{ef,sta}}}{h_{\text{ef,red.}}} N_{\text{Rk,s,C2}}[\text{kN}]$   | -                              | 27   | 41   | 66   | 111  | -   |  |  |
| Partial safety factor                     | γ <sub>Ms,C2</sub> [-]                                                         |                                |      | 1    | ,5   |      |     |  |  |
| Pullout failure                           | ,,                                                                             |                                |      |      |      |      |     |  |  |
| Characteristic resistance tension         | h <sub>ef.sta</sub>                                                            |                                | 5,1  | 7,4  | 21,5 | 30,7 |     |  |  |
| load in cracked concrete C2               | $\frac{h_{\text{ef,sta}}}{h_{\text{ef,red.}}} \ N_{\text{Rk,p,C2}}[\text{kN}]$ | [KN] -                         | 2,7  | 4,4  | 16,4 | -    | -   |  |  |
| Installation safety factor                | γ <sub>2,C2</sub> [-]                                                          |                                |      | 1    | ,0   |      |     |  |  |
| Steel failure without lever arm           |                                                                                |                                |      |      |      |      |     |  |  |
| Characteristic resistance shear           | $\frac{h_{\text{ef,sta}}}{h_{\text{const}}} V_{\text{Rk,s,C2}}[kN]$            |                                | 10,0 | 17,4 | 27,5 | 39,9 |     |  |  |
| load C2                                   |                                                                                | -                              | 7,0  | 12,7 | 22,0 | -    | -   |  |  |
| Partial safety factor                     | γ <sub>Ms,C2</sub> [-]                                                         |                                | •    | 1,   | 25   |      |     |  |  |

<sup>1)</sup> FAZ II C: Only valid for cold-formed version (see A1)

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C                                                      |           |
|------------------------------------------------------------------------------------------------------|-----------|
| Performances: Characteristic values of resistance under tension and shear loads under seismic action | Annex C 7 |

**Table C10:** Displacements due to tension loads for **standard and reduced anchorage depth** (Design method A, according to **ETAG 001, Annex C** or **CEN/TS 1992-4:2009**)

| Type of anchor / cize               |                      |      | FAZ | II, FAZ I | I A4, FA | ZIIC |      |      |
|-------------------------------------|----------------------|------|-----|-----------|----------|------|------|------|
| Type of anchor / size               |                      |      | М8  | M10       | M12      | M16  | M20  | M24  |
| Values for standard anchorage depth |                      |      |     |           |          |      |      |      |
| Tension load in cracked concrete    | Ν                    | [kN] | 2,3 | 4,2       | 7,5      | 13,2 | 16,4 | 22,9 |
| Diaglacament                        |                      | [mm] | 0,5 | 0,5       | 0,7      | 1,0  | 1,2  | 1,2  |
| Displacement                        | $\delta_{N\infty}$   | [mm] | 1,8 | 1,7       | 1,4      | 1,2  | 1,4  | 1,5  |
| Tension load in uncracked concrete  | N                    | [kN] | 4,2 | 7,5       | 11,7     | 18,7 | 23,3 | 32,5 |
| Diaglacement                        | $\delta_{\text{N0}}$ | [mm] | 0,3 | 0,3       | 0,5      | 0,7  | 1,2  | 1,2  |
| Displacement                        | $\delta_{N\infty}$   | [mm] |     | 1         | 1,4      | 1,5  |      |      |
| Values for reduced anchorage depth  |                      |      |     |           |          |      |      |      |
| Tension load in cracked concrete    | Ν                    | [kN] | 2,3 | 4,2       | 6,0      | 9,0  |      |      |
| Displacement                        | $\delta_{\text{N0}}$ | [mm] | 0,5 | 0,5       | 0,7      | 1,0  | -    | -    |
| Displacement                        |                      | [mm] |     | 1         |          |      |      |      |
| Tension load in uncracked concrete  | N                    | [kN] | 4,2 | 5,7       | 8,5      | 12,6 |      |      |
| Displacement                        | $\delta_{\text{N0}}$ | [mm] | 0,3 | 0,3       | 0,5      | 0,7  | -    | -    |
| Displacement                        | $\delta_{N\infty}$   | [mm] | 1,2 |           |          |      |      |      |

Table C11: Displacements due to shear loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

| Type of anchor / size                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FAZ II |                     |      |      |      |      |      |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|------|------|------|------|------|--|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M8     | M10                 | M12  | M16  | M20  | M24  |      |  |
| Shear load in cracked and uncracked concrete | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [kN]   | 6,9                 | 11,4 | 16,9 | 31,4 | 39,4 | 48,5 |  |
| Displacement                                 | $\delta_{V0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [mm]   | 2,4                 | 4,2  | 4,5  | 3,0  | 3,6  | 3,6  |  |
|                                              | $\delta_{V\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [mm]   | 3,6                 | 6,3  | 6,8  | 4,5  | 5,4  | 5,4  |  |
| Type of anchor / size                        | The state of the s |        | FAZ II A4, FAZ II C |      |      |      |      |      |  |
| Type of anchor / size                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | М8                  | M10  | M12  | M16  | M20  | M24  |  |
| Shear load in cracked and uncracked concrete | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [kN]   | 10,1                | 13,6 | 20,9 | 40,5 | 53,9 | 79,0 |  |
| Displacement                                 | $\delta_{V0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [mm]   | 1,8                 | 2,0  | 2,2  | 3,0  | 1,9  | 4,7  |  |
|                                              | $\delta_{V_{\infty}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm]   | 2,7                 | 3,0  | 3,4  | 4,5  | 2,9  | 7,1  |  |

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C           |           |
|-----------------------------------------------------------|-----------|
| Performances: Displacements under tension and shear loads | Annex C 8 |

Table C12: Displacements due to tension loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

| Type of anchor / size               |                              | FAZ II, FAZ II A4, FAZ II C |     |      |      |      |      |   |
|-------------------------------------|------------------------------|-----------------------------|-----|------|------|------|------|---|
|                                     |                              | М8                          | M10 | M12  | M16  | M20  | M24  |   |
| Values for standard anchorage depth | 1                            |                             |     |      |      |      |      |   |
| Displacement DLS                    | $\delta_{\text{N,C2 (DLS)}}$ | [mm]                        | -   | 2,7  | 4,4  | 4,4  | 5,6  | - |
| Displacement ULS                    | $\delta_{\text{N,C2 (ULS)}}$ | [mm]                        | -   | 11,5 | 13,0 | 12,3 | 14,4 | 1 |
| Values for reduced anchorage depth  |                              |                             |     |      |      |      |      |   |
| Displacement DLS                    | $\delta_{\text{N,C2 (DLS)}}$ | [mm]                        | -   | 2,7  | 4,4  | 4,4  | -    | - |
| Displacement ULS                    | $\delta_{\text{N,C2 (ULS)}}$ | [mm]                        | -   | 11,5 | 13,0 | 12,3 |      | 1 |

**Table C13:** Displacements due to shear loads for **standard and reduced anchorage depth** (Design according to **TR 045: Performance category C2**)

| Type of anchor / size           |                         | FAZ II, FAZ II A4, FAZ II C |     |     |     |      |      |   |
|---------------------------------|-------------------------|-----------------------------|-----|-----|-----|------|------|---|
|                                 |                         | M8                          | M10 | M12 | M16 | M20  | M24  |   |
| Values for standard anchorage d | epth                    |                             |     |     |     |      |      |   |
| Displacement DLS                | $\delta_{V,C2(DLS)}$    | [mm]                        | -   | 4,1 | 4,4 | 4,3  | 4,8  | - |
| Displacement ULS                | $\delta_{V,C2(ULS)}$    | [mm]                        | -   | 6,2 | 7,8 | 8,1  | 11,2 | - |
| Values for reduced anchorage de | epth                    |                             |     |     |     |      |      |   |
| Displacement DLS                | $\delta_{V,C2(DLS)}$    | [mm]                        | -   | 3,6 | 4,7 | 5,5  | -    | - |
| Displacement ULS                | δ <sub>V,C2 (ULS)</sub> | [mm]                        | -   | 5,0 | 7,5 | 10,1 | -    | - |

| fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C                                |           |
|--------------------------------------------------------------------------------|-----------|
| Performances: Displacements under tension and shear loads under seismic action | Annex C 9 |